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1. INTRODUCTION 

 The research program discussed in this report consisted of three parallel activities. 
The first activity was a continuation of the monitoring of environmental instrumentation 
under select pavement sections originally constructed by the Ohio Department of 
Transportation (ODOT) in 1995 on US 23 in Delaware County, Ohio. The measurements 
made by the OSU team at that site consisted of soil moisture, temperature and frost depth 
profiles. The installation procedures along with the data collected over an eight year 
period were described in two previous reports (“Seasonal Instrumentation of SHRP 
Pavements – The Ohio State University State Job No. 14586(0); Contract No. 8011,” 
dated September, 1998, and “Seasonal Instrumentation Of SHRP Pavements, Final 
Report – The Ohio State University State Job No. 14586(0); Contract No. 8011,” dated 
June 2004).  In the second activity, OSU constructed and installed tensiometers to 
directly measure the pore water pressures in the subsurface soils at seven locations at the 
DEL23 SHRP test road (four during original road construction and three more in 2002). 
Those devices were monitored throughout the duration of the current project. 
  As part of the existing research program, tensiometers were installed between 
2003 and 2005 at four locations identified by ODOT engineers. The data from 
tensiometers installed at three additional sites in 2006-07, while not part of the actual 
scope work of the project, are included in this report to increase the range of conditions 
under which pore pressure readings have been recorded. The data from all the readings 
are presented and discussed in subsequent sections. 

In the third activity, begun during the previous contract, a testing program was 
conducted to identify relationships between static soil properties that can be routinely 
measured in the laboratory, and the design resilient modulus for compacted cohesive 
subgrade soils. Approximately 800 laboratory resilient modulus tests were performed on 
cohesive soil samples collected by OSU and ODOT personnel. The laboratory program to 
establish the relationships between dynamic soil behavior and static properties was 
described in detail in the 2004 report, as was the regression model developed from the 
experimental data to predict the resilient modulus. In this report the laboratory testing 
performed on the additional soil samples is presented and the predictive tool is 
substantially modified and improved through the use of artificial neural networks.  
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2. RESEARCH OBJECTIVES 

The present program is a continuation of the field study begun with the 1995-1997 
long term pavement performance program and the laboratory investigation of subgrade 
performance that started in 2000. This additional laboratory effort was included because 
the numerical models being used in the design of pavements are becoming increasingly 
more capable of incorporating direct measurements of the response of subsurface 
materials to changing states of stresses into the description of the behavior of subgrade 
materials. Therefore, it should be possible for engineers/researchers, when evaluating 
long term pavement performance at the DEL23 pavement sections, to relate the observed 
and/or measured performance to subsurface soil conditions.  

In modern pavement system designs, an essential input is the dynamic elastic stiffness 
of the supporting soil layers. In this project, we developed a rational method to predict 
the elastic response of the supporting soil using data readily obtained in ODOT 
laboratories.  

The regression model developed as part of  the previous project (The Ohio State 
University State Job No. 14586(0); Contract No. 8011) and described  in our 2004 report 
requires inputting nine different soil parameters (qu, w, P#200, PI, LL, γopt, wopt, wc, and Sr), 
and two boundary conditions (σc and σd). However, in the early (planning) stages of a 
project, not all these parameters may be known, and yet accurate estimates of soil 
properties are needed to develop reasonable preliminary designs of pavement system 
cross-sections. In addition, even when laboratory data are available, past testing programs 
may not have included all the laboratory testing required to thoroughly characterize the 
soil layers.  

One of the more powerful applications of the neural networks employed in the current 
resilient modulus study is the use of the algorithms to generate estimates of missing input 
data points. In fact, the artificial neural networks developed were used as data mining 
tools to extract implicit information from existing data pools.   

The final version of the program delivered to ODOT upon completion of the research 
program has the ability to estimate missing input values as described in the following 
section. 
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3. DESCRIPTION OF THE RESEARCH 

 3.1 Literature Review 

A review of the literature on the behavior of the saturated and unsaturated soil was 
presented in the 1998 and 2004 reports of the pavement monitoring projects. While a 
discussion of earlier research is summarized in this document, the reader is referred to 
our previous reports for more complete reviews of resilient modulus testing and modeling 
efforts as well as discussions on the uses of tensiometers in estimating the in-situ stresses 
and water content.  

Because the mathematical model we developed is based on an application of artificial 
neural networks (ANNs), a topic that has not been covered in our earlier reports, we 
include a discussion of this methodology in this report. It is not a comprehensive review 
however, and the reader is directed to any of the several thorough presentations of ANNs 
available from both print and electronic sources (e.g. Schmidt, [1996], Haykin [1994]).  

 3.1.1 Resilient Modulus  

Seed, et al. (1962) suggested that the most important subsurface response 
parameter in the characterization of pavement system response is the ratio of applied 

cyclic stress (σd) to the resulting elastic strain (εr). The Resilient Modulus (MR), which 

Seed proposed as the measure of the dynamic stiffness, is obtained in the controlled 
environment of a laboratory cyclic triaxial test at loads typical of those found when 
pavement subgrades are loaded. In methods developed since Seed’s proposal, MR has 
been used either directly to design flexible pavements, or converted to a modulus of 
subgrade reaction (k-value) typically used in the design of rigid (concrete) pavements.  

Although simple in concept, a direct measure of the resilient modulus requires a 
time consuming testing program, specialized equipment and specifically trained 
personnel.  Even with these three components in place, current standards for resilient 
modulus testing don’t always produce consistent and/or reproducible results, probably 
due to differences in test equipment, instrumentation, sample preparation, or sample end 
conditions. To minimize the effects of these difficulties with the resilient modulus test 
procedure, researchers have invested considerable effort in the development of methods 
to estimate appropriate design values for the resilient moduli using basic, usually static, 
engineering properties.  

 
 3.1.1.1 Factors Affecting Resilient Modulus 

 
A review of the literature and our own earlier test results have shown that the 

measured resilient modulus is affected by a number of factors, including: stress state 
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(deviator and confining stress), moisture content, soil type and density. Decreases in MR 

with increasing deviator stress have been observed (Seed, et al. (1962), Fredlund, et al. 
(1977), Drumm, et al. (1990), Li and Selig (1994), Pezo and Hudson (1994), Lee et al. 
(1995), Mohammad, et al. (1999), and Kim (1999), Lee (2002). MR was shown to 
increase with increasing confining stress (Kim (1999), Li and Qubain (2003)). Subgrade 
resilient modulus has been shown to be highly dependent on the soil water content, with 
smaal increases in water content resulting in large decreases in MR ((Seed, et al. (1962), 
Fredlund, et al. (1977), Li and Selig (1994), Pezo and Hudson (1994), Burczyk et al 
(1994) Lee, et al. (1995), Drumm, et al. (1997), Kim (1999), Masada and Sargand (2002), 
Lee (2002), Butalia, et al. (2003), and Li and Qubain (2003)). 

 3.1.1.2 Prediction of MR - Current Popular Models 

As mentioned above, the cost, time, difficulty, and lack of repeatability of results 
in resilient modulus tests have forced a search for alternative methods for predicting the 
resilient modulus. Several different models have been developed using simple laboratory 
tests and correlation equations. The existing models can be divided into two broad 
categories: 1) linear models, such as the United States Department of Agriculture (USDA) 
Model, Texas Department of Transportation (TxDOT) model and the Ohio Department of 
Transportation (ODOT) model, and 2) non linear models which include the Hyperbolic 
Model, Georgia Department of Transportation (GDOT) model and the OSU Model.  

A description of the models commonly used by federal and state highway 
agencies was presented in our earlier (2006) report. Table 3.1, which presents the most 
important aspects of several common models in use, is an update of the table presented in 
our 2006 report.  

 

 

 

 

 

 

 

 



 

 

5

Existing 
Model 

Author(s) Input 
Parameters 

Advantages Limitations 

LINEAR MODELS 
USDA Model 

 
Carmichael 
and Stuart, 
1986 

USCS soil type, 
PI, w, %- No. 200 
sieve, σ3, σd 

Includes effect 
of: w, σ3, PI 

 Soil type 

TxDOT Model 
 

Pezo & 
Hudson, 1994 

w, γd, γd,max, PI, 
Sample age, σ3, σd 

Includes effect 
of:  w, - σ3 - PI, 
Sample age 

Narrow range 
for input  
parameters 

ODOT Model 
 

ODOT, 1999 GI (LL, PI, % -No. 
200 sieve), CBR 

Simplicity of 
model 

 σ3 and σd not 
considered 

NON LINEAR MODELS 

Hyperbolic 
Model 

 

Drumm, et al., 
1990 

qu, % clay, PI, γ, 
S, % -200 sieve,  a, 
LL, σd 

Includes effect 
of  PI, qu, , S 

 σ3 not 
considered 
 

GDOT Model 
 

Santha, 1994 w, wopt, γd, σd, Pa 
γd,max, %silt, %clay, 
% swell, LL, PI 
 % -No. 40 sieve, 
S, % shrinkage,   

Includes effect 
of - w and wopt 
 S, LL and PI 
 Pa 

σ3 not 
considered 
Complex model, 
many tests 
required 

OSU Model Kim, 2004 w, wopt, γd,  % 
passing No. 200 
sieve, S, LL, PI, 
σd, σ3 

Includes effect 
of  w and wopt 
S, LL and PI 
σd and σ3 

Difficult to 
incorporate  new 
data 
 

Table 3.1 Current Popular Models (After Table 3.2 in 2004 Final Report to ODOT) 

 3.1.1.3 Data from Published Reports 

Published resilient modulus test results from four recent studies were collected 
and analyzed (Table 3.2). The results of the studies conducted at Purdue University and 
the University of Mississippi were added to the experimental data generated at OSU and 
are included in our analyses. These two studies were selected to help validate the present 
MR model because they included sufficient soil property information, plus directly 
measured resilient modulus laboratory test results allowing predicted and measured 
moduli to be properly compared.  
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Title Conducted by Year 
Subgrade Resilient Modulus for 
Pavement Design and Evaluation 

Purdue University, Indiana DOT (IDOT) 
and FHWA 

1993 

Resilient Modulus for New 
Hampshire Subgrade Soils for use 
in Mechanistic AASHTO Design 

U.S Army Cold Region Research and 
Engineering Laboratory (CRREL) 

1999 

Prediction of Resilient Modulus 
from Soil Index Properties  

University of Mississippi for Mississippi 
DOT and FHWA  

2004 

Laboratory Characterization of  
Cohesive Subgrade Materials 

University of Akron 2005 

Table 3.2 Examples of Published Reports Reviewed 

 
 3.1.1.3.1 Purdue University Study 
 

Resilient modulus tests were performed on five cohesive soils and one granular 
soil in accordance with the AASHTO specification current at the time (AASHTO T 274-
82). Both laboratory and field compacted samples were tested. The effects of freeze-thaw 
cycles were studied as well. Resilient response was correlated with the fabric parameters, 
clay content, and pore water content.  

Resilient modulus test results from laboratory compacted soil samples from two 
sites were included into the database used in the present study (Tables 3.3, Information 
on Sampling Sites, and 3.4, Engineering Properties).  

 

Site I.D Location Station Soil 
Classification 

Date 
Compacted 

Date 
Sampled 

South Bend SB US20 
Bypass 

140 - 141 A-4 / A-6 
(CL) 

Aug 89 Jan; May; 
July 90 

Washington WA US50 
Bypass 

290 A-6/ A-4 (CL) June 89 Jan 91 

 Table 3.3 Information on Sampling Sites for Indiana Soils 

 

Site g max 
(pcf) 

w OMC 
(%) 

GS LL LP PI 

South Bend 129.5 9.4 2.76 21 14 7 

Washington 114 14.9 2.74 30 21 9 

Table 3.4 Engineering Properties of Indiana Soils 
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 3.1.1.3.2 University of Mississippi Study 

 
 Samples of soils from subgrade sections representing different districts in 
Mississippi were tested to determine the physical properties of the selected soils. 
Laboratory tests to measure MR were performed according to the TP46 Protocol 
(AASHTO T294-94).  The study concluded that the most important index properties 
influencing MR were moisture content, degree of saturation, percentage of material 
passing No. 200 sieve, plasticity index and density. Input data are presented in Tables 3.5 
and 3.6.  

Resilient modulus laboratory results, as well as static soil properties from the 
Mississippi tests were used in the present OSU study to assess the performance of the 
neural network approach in general and in the proposed model in particular for predicting 
MR for soils originating outside Ohio. 

 

County/ Road 
Designation 

Unified Soil 
Classification 

AASTHO 
Classification 

Montgomery/US 82 W CL A-4 
Hinds / Norrel W CL A-6 

Table 3.5 Information on Sampling Sites for Mississippi Soils 

 

County/ Road g max 
(pcf) 

w OMC 
(%) 

GS 
LL LP PI UCS 

(psi) 
Montgomery/US 

82 W 
115.20 13.80 2.72 

(assumed) 
22 16.20 6.10 15.4 

Hinds / Norrel 
W 

105.60 17.80 2.67 
(assumed) 

37.20 24.10 13.10 26.9 

Table 3.6 Engineering Properties of Mississippi Soils 

 
 3.1.2 Neural Network Algorithms to Predict Resilient Modulus 
 
 Artificial Neural Networks are designed to mimic the response of the human 
nervous system. McCulloch and Pitts (1943) published an algorithm to imitate 
neurobiological activity and Rosenblatt (1962) developed a simple neural network. 
Werbos (1974) introduced the back propagating algorithm for neural network systems.  
The back-propagation algorithm has since become the most popular learning algorithm.  
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In pavement design and in the geotechnical field, neural network algorithms have been 
used to solve a variety of design problems. Meier & Rix (1994, 1995) and Brendenhann 
and van de Ven (2004) used back-propagation neural networks to estimate stiffness of a 
flexible pavement layer. Bayrak et al. (2005) used ANNs to evaluate the resilient moduli 
of flexible pavement materials.  Hashash et al. (2006) developed an ANN to predict soil 
stress-strain behavior.  

 3.1.2.1 Background 

 The biological nervous system that an artificial neural network is designed to 
simulate is composed of a large number of simple elements operating in parallel.  The 
four key elements in every biological neuron; the cell bodies, dendrites, axons and 
synapses, are illustrated in XFigure 3.1.  In the figure, axons and dendrites are the cell 
filaments extending from the cell bodies. The synapse is the gap between an axon of one 
neuron and the dendrite of another. Information contained in a cell body is sent through 
the system in the form of an electric impulse (signal). When a dendrite detects a signal, it 
forwards it to the cell body to which it is connected. The cell body sums up the signals 
received from its dendrites until the sum of incoming signals exceeds a specified limit. 
When this limit is exceeded, the cell body then transmits a signal to its axon. As the 
dendrites of other nearby neurons detect the incoming signals, the signal is processed 
through the system. Learning is the process by which the effectiveness of the signals sent 
from axons through the synapses is adjusted so that the influence of one neuron on 
another changes to achieve the conditions where predicted responses match (within 
acceptable limits) the observed outcomes. However, unlike their natural counterparts, 
artificial neural networks have a specified number of neurons and the firing rules are 
clear and fixed.  The standard structure of an ANN consists of input receptors, at least 
one output layer and a number of hidden layers (Figure 3.2). Each ANN layer contains a 
number of artificial neurons, called nodes. Nodes are connected to adjacent nodes by 
networking lines to represent dendrites, axons, and synapses. 

 

 



 

 

 
 

Figure 3.1  A simplified biological neuron network system

(source from: http://www.teco.edu/~albrecht/neuro/html/node7.ht
Schmidt, 1996)
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weight is updated in an iterative manner until the predicted output data are as close as 
possible to the actual data corresponding to the input data. 
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biological neuron network system 

http://www.teco.edu/~albrecht/neuro/html/node7.ht
Schmidt, 1996) 

A weighting function, representing the information used by the net to solve the 
problem, is assigned to each link. This weight is used to modify the transmitted signals.  
The net uses the input data and a combination of weights to predict the corresponding
outputs or targets. Inside the network, the net randomly assigns a weight to each link, this 
weight is updated in an iterative manner until the predicted output data are as close as 
possible to the actual data corresponding to the input data. A node connected to a 

line with a large weight has a great potential to impact output of the second 
inherits a transfer or activation function which is the
he strength of the output signal from each node depends on its 

activation function, and the specified weighting function.  The 
engineering structure of each node is as characterized in Figure 3.3. 

 

http://www.teco.edu/~albrecht/neuro/html/node7.html by 

A weighting function, representing the information used by the net to solve the 
problem, is assigned to each link. This weight is used to modify the transmitted signals.  
The net uses the input data and a combination of weights to predict the corresponding 
outputs or targets. Inside the network, the net randomly assigns a weight to each link, this 
weight is updated in an iterative manner until the predicted output data are as close as 

cted to a second 
of the second 

is the 
depends on its 
.  The 

http://www.teco.edu/~albrecht/neuro/html/node7.html
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Figure 3.2  A simplified engineering structure of feed forward and back-propagation                                                           
neural networks 

 
 During a training session, the weight associated with each line is adjusted to 
improve the final output.  A learning rate, which is simply a control parameter to 
determine the step size for any weight adjustments, is also assigned to each node. The 
learning rate can be a fixed value or a function designed to vary during the training 
session.  Each artificial node is connected to, and integrated into a networking structure.  
Data are submitted to each node, manipulated then sent to the next node in a different 
layer. Data can be transported back and forth to many nodes through different layers 
according to an established set of rules. 
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Figure 3.3  A simplified engineering neuron (node) 

 An input data set contains a recorded value for each defined input parameter. 
When the data set is input into the neural networks, information is gathered from each 
recorded data set.  The final output signal for each node in the output layer is the response 
to all input data provided.  The sum of the responses from all output-layer nodes is the 
system solution for each input data set. As with the biological nervous system, complex 
problems require a number of nodes and a complex neural structure to process realistic 
outputs.  However, unlike their biological counterparts, two neural layers generally 
suffice to solve a typical non-linear problem.  
 There are a number of types of ANNs that have been introduced to solve specific 
problems. Supervised learning mechanisms behave similarly to a teacher with knowledge 
and ability to provide correct responses.  Differences between an ANN’s predicted 
response and the measured response can be detected and adjustments made iteratively so 
that the calculated response mimics the targeted response. ANNs with unsupervised 
learning algorithms do not have a teaching mechanism to oversee the learning process 
and there is no targeted response to compare to.  Each node competes with the others to 
be active and influential.  Responses are gradually improved as the networks organize 
themselves.   
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 3.1.2.2 Back-Propagation Modeling Algorithms 

 The network structure of back-propagation is laid out in layers as shown in  

Figure 3.2. There may be several hidden layers but only one output layer. There is no 
direct connection between the nodes in the same layer, but each node is connected to all 
the nodes in any adjacent layer. As shown in Figures 3.4 and 3.5, back-propagation can 
be separated into feed-forward propagation and backward propagation phases depending 
on the direction of the flow of information through the neural network layers.  

 

 

 

Figure 3.4  Flow forward procedures in a two layer back-
propagation neural network (after Hanittinan) 
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Figure 3.5  Flow backward procedures in a two layer back-
propagation neural network (after Hannitinan) 

 In the feed forward phase, the information flow starts at the inputs to each node in 
the first hidden layer and from there to the nodes in the output layers (Figure 3.4).  An 
incoming signal to each node can be calculated by summing the product of an input value 
and a corresponding weight transmitted along each directly connected line (XEq. 3.1X or XEq. 
3.2X). 

w(n)x(n)..........w(3)x(3)w(2)x(2)w(1)x(1)Input(i) ×++×+×+×=   Eq.3. 1 

                                                                                  Eq.3. 2 
  
  

 
w (1), w(2), w(3),…, w(n) =  weights assigned to lines 1,2,3 connected to node i,  
x (1), x(2), x(3),…, x(n) =  signal transmitted along lines 1, 2, 3 …to node i,  
n    =  the total number of incoming signals to node i  
Input (i)    =  sum of incoming signals or inputs to node i,  
Output(i)    =  the output signal or response for node i, 
    =  x(1), x(2), x(3), …for node in the next layer 
w(i)    =  a weight assigned to the line i between two nodes 
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 Commonly, the initial weights are picked randomly within specified ranges. 
During training sessions the weights may change as the network is adjusted. The output 
of one node becomes an incoming signal for a node in the next connected layer and this 
process continues through to the nodes in the output layer.  The signals of the output 
layer nodes are the predicted responses for that training round. At that point, the first 
forward propagation cycle is completed.  An error at each output layer node is 
determined by comparing calculated with measured responses. A backward flow is called 
for when the difference between the design responses and the calculated responses 
exceeds prescribed allowable error levels. In such an occurrence, the output layer 
responses are modified by iterating and adjusting all the weights in the neural network. In 
order to calculate the adjustment needed for each weight, a local gradient at each node 
needs to be defined.  For any node in the output layer, the local gradient can be estimated 
as: 

[ ] [ ]Output(i)Target(i)Output(i)1Output(i)Delta(i) −×−×=         Eq. 3.3 

Delta(i) =  a local gradient for node i, the node of interest 
Target(i) =  the targeted response for node i, in the output layer 

 A local gradient for any node in a hidden layer can be determined, once the local 
gradient of its immediately connected node in the next layer closer to the output layer is 
defined.   

[ ] 1)Delta(i1)Weight(iOutput(i)1Output(i)Delta(i) +×+×−×=  Eq.3.4 

Delta(i+1) =  a local gradient for a node in the layer closest to the output layer 
immediately connected to node i 

Weight(i+1) =  a weight for the line from a node in the layer closest to the output layer 
immediately connected to node i 

 Adjusted weights for each line connected to the node of interest are each the 
product of the old weight and the amount of change needed.  The adjusted weight can be 
expressed as:  
 

∆Weight(i))oldWeight(i)newWeight(i +=                 Eq. 3.5 

Input(i)   Delta(i)  rate Learning  ∆Weight(i) ××=                                                  Eq.3.6 

Learning rate  = rate assigned during each iteration (taken to be constant in this study) 
Weight(inew) = new weight for the line from the layer away from the output layer 

immediately connected to node i  



 

Weight(iold) = old weight for the line from the layer away from the output layer 
immediately connected to node i  

∆ Weight(i)  =  adjusted amount given to a weight for the line from the layer away from 
the output layer immediately connected to node i  

 

 Figure 3.6 illustrates a simple neural network and its processing procedures. A 
full forward and backward propagation is counted as one iteration. Once the desired 
response is obtained, all weights are fixed. During a runtime session, the estimated 
response obtained in the output layers is the ANN prediction.  
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gure 3.6  A simplified engineering diagram of a neural network  

3.1.2.3 Application to the Resilient Modulus Study 

In the developed network, one hidden layer and the output layer were set to 
ndle the modulus estimation. Data were divided into three main groups based upon soil 
pes (A-4, A-6, and A-7-6) with one neural network established for each soil type.  The 
mber of nodes in the first hidden layer was set to be the same as the number of input 
rameters.  Only one node in the output layer, corresponding to the single valued 
timate of modulus, was specified.  
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 An appropriate number of nodes in the hidden layer is typically determined by 
trial and error. For the current study a ratio 1.5 hidden nodes to one input yielded the 
most reasonable results. 

 An ANN with a small learning rate learns slowly because only a small adjustment 
can be made to each weighting function during an iteration.  However, too large a 
learning rate may cause weights to fluctuate and outputs to become unstable.  Therefore a 
small learning rate was specified for the resilient modulus study. 

 3.1.2.4 Experimental data usage in model development 

 Recorded data for each soil type group were randomly divided into three 
categories for training, validating and testing purposes.  The training data sets contained 
about 60% of the recorded data, with the remaining 40% being divided equally between 
model validation and testing.  
 
 3.1.2.5 Estimating Resilient Modulus from Incomplete Data Sets 
  

The Neural Networks developed were designed to and can be used to estimate 
missing data in input data sets. The following sections briefly explain the required input 
parameters for the neural networks developed in this study including the ANNs created 
from the existing data sets to estimate unconfined compressive strength (qu).   

Eight qu prediction neural networks were proposed for the three soil types studied.  
Six qu prediction neural networks, ANNa/A-4; ANNa/A-6; ANNa/A-7-6; ANNb/A-4; ANNb/A-6; 
ANNb/A-7-6, were identified for each soil type and specific input parameter combinations.  
Separate training sessions were conducted for each of the three soil types.  A combined 
characterization of the unconfined compressive strength (ANNa/All and ANNb/All.) was 
also made for all fine grained soil data. These neural networks are described in Table 3.7 
which provides the input combinations that were used to develop the qu prediction neural 
networks. 

Although potentially less precise than the model that uses all the recommended 
inputs, it is useful to provide algorithms to derive MR when only limited information is 
available.  The neural networks: ANN1/A-4; ANN1/A-6; ANN1/A-7-6; ANN2/A-4; ANN2/A-6; 
ANN2/A-7-6; ANN3/A-4; ANN3/A-6; and ANN3/A-7-6, were developed for different 
combinations of known parameters for each specific soil type. In addition, three ANNs 
(ANN1/All; ANN2/All; and ANN3/All) were constructed to determine MR using as the 
database all the fine grained material data collected in this study without segregating the 
test results into categories based on the AASHTO classification. The input combinations 
for these MR prediction ANNs are shown in Table 3.8. 
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  3.1.2.5.1 qu prediction ANNs  

As shown in the Row a of Table 3.7, ttthe ANNs: ANNa/A-4; ANNa/A-6; ANNa/A-7-6; 
and ANNa/All, require as input parameters  P#200, PI, and LL, wopt, wc, and Sr  in the 
estimation of  qu . Instead of P#200, PI, and LL input parameters (Row b, Table 3.7), soil 
type is used as the critical input parameter in qu estimation for ANNb/A-4; ANNb/A-6; and 
ANNb/A-7-6. 

 3.1.2.5.2 MR prediction ANNs  

 The key input parameters typically used to estimate CBR are P#200, PI, and LL. 
The CBR value is, in turn, commonly used to estimate MR. The neural networks 
developed in this activity were designed to require only P#200, PI, and LL as input 
parameters for an MR prediction (Row 1, Table 3.8). If desired, these ANNs: (ANN1/A-4; 
ANN1/A-6; ANN1/A-7-6; and ANN1/All) can be used to compare the MR results predicted 
directly from CBR values. However, if the model is used this way, a broad range in 
predicted values of MR should be expected, since many soils may share similar P#200, PI, 
and LL combinations. 

The neural networks ANN2/A-4; ANN2/A-6; ANN2/A-7-6; and ANN2/All required all 
numerical input parameters to calculate MR.  These required input parameters are P#200, 
PI, and LL, wopt, wc, Sr, qu, σ3, and σd (Row 2, Table 3.8).  Because all relevant numerical 
inputs are used in developing ANNs, these ANNs are able to respond with a precise 
estimate of MR to a wide range of input data. 
 When a soil type can be assumed but its measured P#200, PI, and LL data are not 
available, it is convenient to use the soil type as the representative input parameters in MR 
prediction. ANN3/A-4; ANN3/A-6; ANN3/A-7-6, and ANN3/All accept soil type, wopt, wc, Sr, qu, 
σ3, and σd as inputs and generate an estimate of MR as the response (Row 3, Table 3.8) 
 
 
 

ANN P#200 LL PI Soil Type wopt wc Sr 
A Yes Yes Yes N/A Yes Yes Yes 
b N/A N/A N/A Yes Yes Yes Yes 

 
 

Table 3.7  Options for estimating qu  using ANN simulations (3 soil types for 
each option) 
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ANN P#200 LL PI 

Soil 
Type wopt wc Sr qu σσσσ3 σσσσd 

1 Yes Yes Yes N/A N/A N/A N/A N/A N/A N/A 
2 Yes Yes Yes N/A Yes Yes Yes Yes Yes Yes 
3 N/A N/A N/A Yes Yes Yes Yes Yes Yes Yes 

 
 
Table 3.8 Available options for MR ANN simulations (3 soil types for each option) 

Note:  N/A = not applicable 

 3.2 Summary 

The artificial neural network is trained (the learning process) with the objective of 
recognizing interactions between inputs and the resulting response patterns.  The ANN 
learns by example, it will associate a set of input values with the corresponding set of 
output values, and will remember the associated patterns for future comparisons. A 
network can be trained using the process of back propagation, in which the difference 
between the predicted and target MR values are minimized and the error is redistributed to 
all neurons in the previous layer. A feed forward, back propagation network was used in 
the present study to estimate MR. This type of network is the most common of ANN used 
to solve problems where the exact mathematical functions are unknown. The network 
needs to be trained all available information, but once trained, it can be used to make 
projections given new input data. 
 Training and validating activities have been competed for the large data set (>800 
resilient modulus tests) introduced in our earlier (2004) report and supplemented with the 
data presented in Section 6 of this final report. The numerical program provided includes 
artificial neural networks suitable for MR evaluation on a personal computer operating in 
the Windows environment (XP or higher). The program selects which of the ANNs is 
appropriate to the task of determining a design MR based on the information provided on 
the input screen. All the ANNs have been trained and verified using the data generated in 
the experimental program conducted in the soil mechanics laboratory at OSU.  
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4. FIELD INSTRUMENTATION SITE DETAILS 

 Monitoring the subsurface conditions at the SPS experimental sites of US23 in 
Delaware, Ohio continued throughout the duration of the project. In addition to the 
DEL23 locations, tensiometers were installed at seven more sites with a variety of 
subgrade conditions. The locations of all the instrumented and monitored sites are shown 
on Figure 4.1.  A typical tensiometer installation consisted of three measurement points 
separated vertically by 12 inches so that the shallow pore pressure could be recorded. 
Each is discussed in the following. 

 4.1 DEL 23 

Monitoring the responses of the instrumentation embedded in the test sections assigned to 
OSU at the DEL 23 SHRP test road continued throughout the project duration. Actual 
locations of the original test sections as well as the added tensiometer locations have been 
described in the earlier referenced reports. For reference, the schematic locating the test 
sections which was given in those reports is presented here as Figure 4.2. Instruments at 
stations 390109, 390263, and 390212 were damaged or destroyed at different times 
during the project. 
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Figure 4.1 Locations of OSU Instrumentation Sites 
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Figure 4.2 Locations of OSU Field Instrumentation at DEL23  
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 4.2 WAY 30  

The WAY 30 test pavement is a four-lane highway relocation of US 30 in Wayne 
County, Ohio. The test pavement begins just east of the city of Wooster, OH at an 
interchange with State Route 83 and extends east to Kansas Rd. near State Route 57. A 
perpetual asphalt pavement and a long lasting Portland cement pavement were designed 
and constructed. Pavement instrumentation was installed during construction to monitor 
the load and environmental conditions. Tensiometers were installed by OSU to monitor 
the pore water pressure profile in the subgrade at four stations (Figure 4.3). At station 
three, the sensors were damaged when the concrete pull box was moved by the contractor 
after installation (Figure 4.4).  
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Figure 4.3 OSU WAY 30 Site Station Layout  
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Figure 4.4 Damaged Sensors at WAY 30 Station Three 
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 4.3 MAD 70  

The MAD 70 site is located on the Madison/Clark County I-70 reconstruction 
project. The overall project was 14 miles long, extending from US 42 in Madison County 
to State Route 54 in Clark County. It involved resurfacing or full-depth reconstruction of 
the existing lanes and the addition of a third lane in each direction, deck repair, repair or 
repaving nine ramps and replacement or widening of 13 bridges. One tensiometer station 
was initially installed in September 2005 in the eastbound lanes of  I-70 near the 
intersection of US 42. However, the sensors were damaged by construction crews shortly 
after the installation (Figure 4.5). Two replacement stations were installed under the 
MAD 70 westbound lanes in 2006 west of the US 42 overpass (Figure 4.6).  

 

 

Figure 4.5 Instrumentation Damaged at MAD 70 Eastbound after Installation 
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SU MAD 70  Site Location Layout 

 

 

SU MAD 70 Site Station Layout – Aerial View
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 4.4 ROS 207 

The ROS 207 connector project involved the construction of a 2.67-mile, two-lane 
highway from State Route 104 at the Ross County Fairgrounds to U.S. Route 23 near 
Delano Road (Figure 4.8). The site for the tensiometer instrumentation was selected to be 
the culvert on the northeast bound lane of the connector near the intersection of State 
Route 104. The subgrade consisted of sandy soils from a nearby borrow pit.  

 

 

 

 Figure 4.8 OSU ROS 207 Site Station Layout 
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Figure 4.9 ROS 207 Site Instrumentation Location  

 

 4.5 I -71/I -270 Interchange 

Three tensiometers were installed on ramp M at the interchange of I -270 and I- 71 
in northern Franklin County (Figure 4.10).  Following convention established in our 
earlier tensiometer installations, three sensors were arranged vertically with the 
uppermost sensor at the top of the subbase, with the second and third tensiometers 12 and 
24 inches beneath the top sensor. However, heavy equipment damaged the topmost 
tensiometer during roadway construction shortly after installation.   
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Figure 4.10 OSU I-71/I-270 Site Station Layout 

 

 

 

Figure 4.11 OSU I-71/I-270 Site Station Layout – Aerial View 
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 4.6 OSU FDR Sites 

Tensiometers were also installed at the OSU Full Depth Reclamation (FDR) test 
pavement sites in Delaware, Warren and Muskingum counties. In this on-going study, 
three severely deteriorated Ohio county roads were rehabilitated using the FDR 
technology with different stabilizing agents including fly ash, lime-kiln dust, cement, and 
bituminous emulsions. The construction of the first two sites (in Delaware and Warren 
Counties), was completed in September 2006. During construction, tensiometers were 
installed along with load response (pressure cells, LVDTs, and strain gauges) and 
environmental sensors (lysimeters) to monitor pavement response and subsurface water 
quality. Standard FWD tests and pavement response data were collected and monitored 
regularly after the completion of construction.  Figure 4.12 shows the plan view of the 
FDR test pavement sections in Delaware County.  Tensiometers were also installed at the 
third FDR site located in Zanesville, Ohio in August 2007.  
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Figure 4.12 Plan View of OSU FDR Pavement Site at Delaware County, Ohio 

 

 

 

 

 



 

32 

 

 

Figure 4.13 OSU S. Section Line Rd. Site Station Layout 

 

 

 

Figure 4.14 OSU S. Section Line Rd. Site Station Layout – Aerial View 
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Figure 4.15 OSU Warren County Site Station Layout 

 

 

 

 

Figure 4.16 OSU Warren County Site Station Layout – Aerial View 
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Figure 4.17 OSU Muskingum County Site Station Layout 

 

 

 

Figure 4.18 OSU Muskingum County Site Station Layout – Aerial View 
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 4.7 Summary 

 Several sites were selected to represent a variety of subsurface conditions. These 
sites were monitored for periods of up to ten years. At the DEL23 site, LTPP 
instrumentation continued to be monitored for the life of the instruments. Many of those 
instruments reached the end of their useful lives during this phase of the project. 
Tensiometers capable of measuring either positive or negative pore water pressures and 
thereby giving a record of water effects on the soils supporting the overlying pavement 
systems, were installed at all the sites studied. The tensiometers require some care in 
manufacture, during and shortly after installation as evidenced by the number of 
instruments damaged or destroyed by highway construction crews within days of 
installation. However, once installed, the tensiometers have been shown to be rugged 
devices with a very high survival rate even after extended test periods. The data collected 
from all the installed instrumentation are presented in the following section.  
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5. FIELD MEASUREMENTS 

 At the DEL23 site, SHRP prescribed instrumentation was installed at the locations as 
shown in Figure 4.2. The several instruments were monitored during the initial 
construction period. Installation procedures and post-construction values were presented 
in our reports dated September 1998 and June 2004. Instrumentation hardware, recording 
procedures, as well as problems with reliability and longevity were discussed in detail in 
those two reports. Data collected, including tensiometer data, up to the date of the 
respective reports was also presented.  Presented in this section is a summary of the data 
collected during the period 2004 to 2007. 

  5.1 DEL 23  

 5.1.1  SHRP Instrumentation 

 Table 5.1 lists the design parameters for each section at the DEL 23 site sampled by 
the OSU team, including the sections added after the original construction period. Figure 
5.1 presents an example of a typical SHRP configuration of the installed instrumentation 
(here represented by test section 390263).  Our previous reports have provided 
descriptions of the data collected and methods for reporting and storing responses. Since 
the methods of data collection and storage and preservation were unchanged, the reader is 
referred to those two reports for details.  

  5.1.1.1   Moisture Content 

Using Section 390904 as an illustration of the data collected, moisture content 
(from TDRs) data can be plotted as shown in Figure 5.2 for the year 2007. The data are 
presented as seasonal averages (SU = Summer, AU = Autumn, WI = Winter, SP = 
Spring). They clearly show seasonal fluctuations in the moisture with the highest 
moisture contents occurring in the summer. Figures 5.3 through 5.6 show the same 
variations during the preceding years. The moisture content data over the full duration of 
the project (three reports) as a function of instrument location in the subsurface profile 
(Figures 5.7 through 5.10) highlight the seasonal variations in subgrade moisture content. 
It is apparent that, in the last four years of data collection, the average annual moisture 
content in the subgrade has remained at approximately 25%. Our earlier reports observed 
continuing increases in moisture content for several years after construction. However, 
our later data show that once full saturation was reached, increases in water content 
appear to have been limited to seasonal fluctuations. This observation is supported by the 
tensiometer data presented in Section 5.1.2 where predominantly positive pore pressures 
have been measured for several years. 



 

37 

 

  Moisture content data are presented for section 390263 for comparison purposes. 
The same seasonal variations are observed at all depths, but despite considerable data 
scatter, it is apparent that the annual mean moisture content has remained approximately 
constant since 2003-04 (Figures 5.11 through 5.14).  

  5.1.1.2   Soil Temperature  

The sections for which temperature data were collected during the period 2004 
through 2007 are given in Table 5.1. Temperatures recorded for most of the thermistors 
indicated faults in either the sensor or the data logger during much of the study period. 
Temperature readings collected were uploaded to the project data base but were 
insufficient to show trends so were not included herein.   

  5.1.1.3   Resistivity  

The soil resistivity profiles collected were of questionable quality for much of the 
project study period due either to electrical problems with the collection system or sensor 
failure. The stations at which resistivity gages were installed are given in Table 5.1.   

 5.1.2  Tensiometers 

Tensiometers were installed under seven pavement sections plus the weather 
station. The locations are shown in Figure 4.2. The tensiometers at sections 390211, 
390263 and 390904 and the weather station were all installed in 1996 when the original 
SHRP instrumentation was placed. The tensiometers at sections 390160, 390106, 390121 
and 390109 were installed in 2002 and 2003. With the exception of the weather station 
location which had only two tensiometers installed, pore pressures were recorded at three 
depths at each location, typically at the interface between the base and subgrade and at 
depths of 12 and 24 inches (30, and 60 cm) below the base into the subgrade.  

The time history of the water pressures for the DEL 23 sections are presented in 
Figures 5.15 through 5.19. By the spring of 2004, the tensiometers recorded positive pore 
water pressures (except at the weather station) and although there were seasonal 
fluctuations in the value of the water pressure at each location, the data were typically 
positive, meaning the static water table had risen to and stayed between the surface of the 
roadway and the sensor. At the time of installation, the pore pressure values recorded by 
the tensiometers installed in 2002 and 2003 were all negative (less than atmospheric 
pressure) at the interface with the base, but at 12 and 24 inches into the subgrade, positive 
pore pressures existed by the time the first readings were taken. In general, the pore 
pressures continued to increase through the following months. At the end of the recording 
period, the pore water pressures recorded were typically positive at all three elevations.  
It is interesting to note that the observation made in our earlier reports concerning the 
pore pressure measurements at the weather station were observed during this final phase 
of the project as well. The pore pressure measurements taken at the weather station 
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fluctuated more widely at the 12 inch depth than at any location under any pavement 
section. The effect of sealing the surface and thereby eliminating surface infiltration and 
evapo-transporation as moisture regulating mechanisms was to reduce the seasonal 
variability in ground water levels while increasing the mean groundwater elevation as 
well as the average water content.  A review of the pore pressures recorded at the weather 
station from the time the tensiometers were installed is presented in Figure 5.20.  
As stated in our 2004 report, these tensiometer data strongly suggest that water is being 
drawn up into the profile from depth. The continued high water levels over the most 
recent four year period support the observation made in 2004 that the base and subbase 
should not be considered as free draining. 
 
 5.2 WAY 30 
 

As discussed in Section 4.2, the tensiometers installed under the WAY30 test 
pavements at locations 2 and 3 were field modified. Further, the tensiometers placed at 
location 3were damaged beyond repair when the pull box was displaced by the contractor 
shortly after installation was completed. The change in pore pressure over an eight month 
period beginning in the spring after installation the previous summer is shown for 
location 1 in Figure 5.21. The pore pressures remained consistently negative, meaning the 
water table was below the sensor level, throughout this period. However, during a load 
test in the spring following installation, dynamic pore pressure response was recorded 
under the test pavements. As can be seen in Figures 5.22, 5.23, and 5.24, the effect on the 
pore water of the loaded trucks passing over the sensor was clearly recorded as a rapid 
increase in the static pore pressure indicating saturated conditions at all sensor locations 
at all three stations. The dynamic pore pressures were recorded in October when a truck 
passed over the tensiometers at Station 1 during a scheduled monthly reading. Figure 
5.25 presents the results of those dynamic pore water pressure readings. As was the case 
the previous spring, the passing of the loaded truck was recorded as an instantaneous 
increase on pore water pressure. Although the pore water pressure returned to the preload 
conditions immediately after the truck passed the sensors, the fact that the sensors 
recorded the passing truck in real time means that the subsurface is saturated.  
 
 5.3 MAD 70 
 

Tensiometers were installed in the westbound lanes of Interstate 70 west of the 
US 42 overpass in summer 2006. The pore pressure history over a 15 month period is 
shown for Station 1 in Figure 5.26 and for location 2 in Figure 5.27.  Although pore 
pressures were negative shortly after installation, positive pore pressures were the norm 
in less than one year, indicating a high water table strongly indicating saturated 
conditions existed in the supporting soil beneath the pavement. 
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 5.4 ROS 207 
 

Pore pressure distribution recorded at the Ross County site is shown in Figure 
5.28 for a 16 month period. It is interesting to note that at this location pore water 
pressure in the spring following the tensiometer installation was positive at the two lower 
sensors. At all other times and for the topmost tensiometer, the pressures were negative 
indicating a shallow but seasonally fluctuating groundwater table.    
 
 5.5 I-71/I-270 Interchange 
 

The tensiometers installed in the ramp from I-270 to I-71 were damaged during 
installation. No reliable readings were retrieved at this location. 
 
 5.6 OSU FDR Sites 
 

An example of the data collected at the instrumented full depth pavement 
reclamation sites discussed in Section 4 is presented in Figure 5.29.  Pore water pressure 
response was recorded as heavy trucks passed over the Station 6 instrumentation. As has 
been seen at other instrumented locations, the pore water response was coincident with 
the applied load indicating the likelihood that saturated conditions prevailed under the 
reclaimed pavement sections.  
 
 5.7 Summary 
 

By the end of the project, the temperature and resistivity gauges installed at the 
five locations at the DEL23 test pavement assigned to the OSU researchers had failed. 
Almost all the moisture content sensors (TDRs) were still functioning satisfactorily and 
data were collected up to the conclusion of the current work effort. The tensiometers 
installed as an extra source of data on the condition of the subsurface soils are still 
monitoring pore pressures. What has been determined from the TDRs is the moisture 
content under the paved sections varied seasonally but the mean value continued to rise 
for several years. In the latter years of the investigation the mean water content was 
essentially constant. The tensiometers that were installed to record the pore pressures also 
measured a response that varied seasonally but trended to higher and higher pore 
pressures with time.  At most of the sites studied, the pore pressures became positive 
within one or at most two years after installation and remained positive for most of the 
year. This information combined with the TDR data strongly indicates that saturated soils 
were encountered at all sites studied and similar conditions should be expected to exist 
under other Ohio highways.    
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Figure 5.1 Instrumentation Configurations (390263 from 2004 report) 
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Table 5.1 Ohio State University DEL 23 Test Sections 

 

      SPS-1:  Strategic study of structural factors for flexible pavement                AC: Asphalt Concrete  
      SPS-2:  Strategic study of structural factors for rigid pavement                    PCC: Portland Cement Concrete 
      SPS-9:  Asphalt program field verification studies. 
      DGAB: Dense Graded Aggregate Base          ATB: Asphalt Treated Base       PATB: Permeable Asphalt Treated Base 

Temperature  
Moisture 
Frost Depth 
Soil Suction 

Yes 

 

 
DGAB 

     6 
11 

 SPS-2 

 

S4 390263 

Soil Suction Yes 

 

4" PATB/ 
4" DGAB 

     8 
11 

 
SPS-2 

 
J12 

390212 

Temperature  
Moisture 
Frost Depth 
Soil Suction 

      Yes 

 

4" PATB/ 
4" DGAB 

  
      8 

 
11 

 
 
SPS-2 

 

 
J11 

 
390211 

Temperature  
Moisture 
Frost Depth 

 
No 

 
DGAB 

 
       6 

 
   8 

 
 
SPS-2 

 
J1 

 
390201 

Temperature  
Moisture 
Frost Depth 
Soil Suction 

Yes 

 

12" ATB/ 
4" PATB/ 
6" DGAB 

    22 
 

4  Experimental  
 SHRP Mix                                                   
SPS-9 

 
SHRP 

 
390904 

Soil Suction 
No 

8" ATB/ 
4" DGAB 

    12 
 7 

SPS-1 J6 390106 

Soil Suction Yes 11" ATB/ 
4" DGAB  

    15 
 

4 SPS-1 S7 390160 

Temperature  
Moisture 
Frost Depth 

Yes 4" PATB/ 
8" DGAB 

     12 
 

7 SPS-1 J8 390108 

Type Base PCAC 

    
   Environment 
    Instrument 

 
Drain 

Base Thickness (in)  
 
Designation  

   
  Section 

       

     ID 
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Figure 5.2 Seasonal Moisture Content for 2007 (390904) 

 

 

 

 

 

 

 

Figure 5.3 Seasonal Moisture Content in 2006 (390904) 
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Figure 5.4 Seasonal Moisture Content for 2005 (390904) 

 

 

 

 

 

 

Figure 5.5 Seasonal Moisture Content in 2004 (390904) 
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Figure 5.6 Seasonal Moisture Content for 2003 (390904) 
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Figure 4.14 Annual Average Moisture Content for 1996-2003 (390263) 

Figure 5.7 Moisture Content (390904) Topmost TDR 1996-2007 

 

 

 

 

 

 

 

 

 

 

Figure 5.8 Moisture Content (390904) Top of Subgrade 1996-2007  
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 Figure 5.9 Moisture Content Middle of Subgrade 1996-2007 (390904) 
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Figure 5.10 Moisture Content Bottom of Subgrade 1996-2007 (390904) 

 

 Figure 5.11 Moisture Content at TDR in Base 1996-2006 (390263) 

 

 

 

 

 

 

 

 
Figure 5.11 Moisture Content at TDR in Base 1996-2006 (390263) 
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Figure 5.12 Moisture Content at Top of Subgrade 1996-2006 (390263) 

 

 

 

 

 

 

 

 

 

Figure 5.13 Moisture Content Middle of Subgrade 1996-2006 (390263) 
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Figure 5.14 Moisture Content Bottom of Subgrade 1996-2006 (390263) 

 

 

 

 

 

 

 

 

 

Figure 5.15 Pore Water Pressure at Section 390904  
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Figure 5.15 Pore Water Pressure at Section 390904  

 

 

Figure 5.23    DEL23 Pore Water Pressure at Weather Station 

 

 

 

 

 

Figure 5.16 Pore Water Pressure at Section 390211  
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Figure 5.17 Pore Water Pressure at Section 390160  

 

 

 

 

 

 

 

 

 

 

Figure 5.18 Pore Water Pressure at Section 390901 
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Figure 5.19 Pore Water Pressure at Section 390106 

 

 

 

 

 

 

 

 

 

Figure 5.20 Pore Water Pressure at Instrumented Weather Station 
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Figure 5.21 Pore Water Pressure at WAY 30 Station 1 

 

 

 

 

 

 

 

 

 

Figure 5.22 Dynamic Pore Pressure Response at WAY 30 Station 1 (April 06) 
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Figure 5.23 Dynamic Pore Pressure Response at WAY 30 Station 2 (April 06) 
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Figure 5.24 Dynamic Pore Pressure Response at WAY 30 Station 4 (April 06) 
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Figure 5.25 Dynamic Pore Pressure Response at WAY 30 Station 1 (October 06) 
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Figure 5.26 Pore Water Pressure at MAD 70 Station 1 
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Figure 5.27 Pore Water Pressure at MAD 70 Station 2 
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Figure 5.28 Pore Water Pressure at ROS 207 
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Figure 5.29 Dynamic Pore Water Pressure at Section Line Rd Station 6. 
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6 ADDITIONAL LABORATORY RESILIENT MODULUS TESTING 

Laboratory tests were conducted on samples of the soils collected from the 
tensiometer installation locations at the WAY30, and MAD70 sites described in Section 4. 
As was typical of previous laboratory resilient modulus testing programs, Standard 
Proctor compaction, particle size analysis, Atterberg Limits, unconfined compressive 
strength and specific gravity tests were performed. Table 6.1 lists when and where the 
samples were collected and their respective soil types. 

 
Soil Type Location Sample Name Date Collected 

A-4 WAY 30 
Station 1 

W30ST1 SUMMER 05 

A-4 MAD 70 MAD SUMMER 05 
A-4 WAY 30 

Station 2 
W30ST2 SPRING 06 

 Table 6.1 Sample Description and Location 

Using the characterization protocol of earlier laboratory programs, all the samples 
were identified by location, moisture condition (dry, optimum or wet of optimum) and 
Sample #. For example: W30ST1WETS1, identified a sample from WAY 30 Station 1, 
compacted wet of optimum, sample #1. 
 
 6.1 Classification Tests 
 

All tests were performed in accordance with the appropriate industry standards. 

Table 6.2 Classification and Engineering Properties 

 
Table 6.3 presents the values for optimum moisture content and maximum dry density for 
each of the three soils. 
 
 

Soil Type Sample 
Name 

Liquid 
Limit 

Plastic 
Limit 

Plasticity 
Index 

% 
Passing 

#200 
 

% of 
sand 

% of 
silt 

% of 
clay 

GS 

AASHTO USCS 

 
A-4 

 

ML W30ST1 25 23 2 61 20 54 7 2.75 

CL MAD 26 17 9 62 29 48 15 2.76 

CL-ML W30ST2 26 20 6 59 24 51 8 2.74 
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Soil Type Sample Name Optimum 
Moisture Content 

(%) 

Maximum Dry 
Density (kg/m3) 

 
A-4 

W30ST1 14 1929 
MAD 13 1941 

W30ST2 14.5 1918 

Table 6.3 Optimum Moisture Content and Maximum Dry Density 

 6.2 Unconfined Compression Tests 

Specimens were tested 24 hours after compaction to allow for uniform moisture 
content throughout the specimen. The UCS tests were performed on each soil sample at 
three different moisture contents: 2% dry of optimum (DRY), at optimum (OMC) and 2% 
wet of optimum (WET) (Table 6.4).  

 

Soil 
Type 

Sample 
Location 

OMC 
(%) 

Max. 
Dry 

Density 
(g/cm3) 

Sample 
Number 

 Sample 
Moisture 
Content 

(%) 

Sample 
Dry 

Density 
(g/cm3) 

qu 
(psi) 

qu 
(kPa) 

A-4 WAY 30  
Station 1 14 1.928 

DRY S3 11.27 1.91 103.8 715.74 
          
OMCS1 13.7 1.9 72.6 500.56 
          
WET S3 15.88 1.86 73.7 508.14 
          

A-4 MAD70  13 1.941 

DRY S3 10.42 1.88 90 620.52 
          
OMCS2 12.29 1.94 77.64 535.30 
          
WET S6 15.37 1.88 27.15 187.19 
          

A-4 WAY30  
Station 2 14.5 1.918 

DRY S3 12.46 1.92 62.29 429.47 
          
OMCS1 14.35 1.89 43.9 302.68 
          
WET S2 16.29 1.81 27.23 187.74 
          

 Table 6.4 Unconfined Compressive Strength Test Results 
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 6.3 Resilient Modulus Tests 

The resilient modulus was determined in accordance with AASHTO T294-94 
(Resilient Modulus of Unbound Granular Materials and Subgrade Soils- SHRP Protocol 
P46) testing procedure.  At the beginning of the test, the sample was subjected to a 
preconditioning stage (1000 load cycles) followed by five steps (100 cycles each) with a 
confining pressure of 41, 21 and 0 kPa (6, 3 and 0 psi) for a total of 2500 cycles. As 
specified in the standard, the response to each load cycle was recorded.  A plot of MR vs. 
deviator stress for each confining pressure was generated for each test. As illustration of 
the data, test results for WAY 30 Station 1 OMC S2 are presented in figure 6.4. Figures 
6.5 through 6.13 show typical MR test results for WAY30 Station 1, MAD70 and 
WAY30 Station 2.   

 

 

 

Figure 6.4 MR test results for W30ST1OMCS2              
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Figure 6.5 MR test results for WAY 30 Station 1 at 41 kPa Confining Stress 

 

Figure 6.6 MR test results for WAY 30 Station 1 at 21 kPa Confining Stress  
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Figure 6.7 MR test results for WAY 30 Station 1 at 0 kPa Confining Stress          

 

Figure 6.8 MR test results for MAD 70 at 41 kPa Confining Stress                            
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Figure 6.9 MR test results for MAD 70 at 21 kPa Confining Stress        

 

Figure 6.10 MR test results for MAD 70 at 0 kPa Confining Stress      
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Figure 6.11 MR test results for WAY 30 Station 2 at 41 kPa Confining Stress             

    

Figure 6.12 MR test results for WAY 30 Station 2 at 21 kPa Confining Stress     
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Figure 6.13 MR test results for WAY 30 Station 2 at 0 kPa Confining Stress 

  

 As shown in Figures 6.8 through 6.13, MR increased with an increase in 
confining stress. At constant confining stress, MR gradually decreased with increasing 
deviator stress. This trend was observed and has been reported by other researchers (e.g. 
Seed, et al. (1962), Fredlund, et al. (1977), Drumm, et al. (1990), Li and Selig (1994), 
Pezo and Hudson (1994), Lee et al. (1995), Mohammad, et al. (1999)) as well as being 
observed in the earlier OSU tests and described  in our previous  project reports.  
  The modulus generally decreased with increasing moisture content; however 
for WAY 30 Station 2 the curves, the measured values for MR at OMC and for MR at 
WET conditions were similar at zero confining stress. The measured modulus at the 
design optimum condition was lower than for the wet of optimum condition at 0 and 21 
kPa confining stresses, highlighting the sensitivity of the modulus to slight variations in 
moisture content and density.  Actual sample moisture contents and dry densities are 
shown in Table 6.5.  
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 Sample 
Location 

Sample 
ID 

w target 
(%) 

Max. Dry 
Density 
target 
(g/cm3) 

w actual 
(%) 

Dry 
Density 
(g/cm3) 

W30ST1 

DRY S2 12 1.89 12.64 1.92 
OMC S2 14 1.928 14.93 1.86 
OMC S3 14 1.928 14.92 1.9 
WET S3 16 1.877 16.61 1.82 

MAD 
DRY S2 11 1.886 11.94 1.92 
OMC S1 13 1.941 12.86 1.93 
WET S1 15 1.915 14.82 1.89 

W30ST2 

DRY S1 12.5 1.882 13.01 1.89 
OMC S1 14.5 1.918 14.72 1.88 
OMC S2 14.5 1.918 15.21 1.83 
WET S1 16.5 1.82 15.51 1.82 

Table 6.5 Design and Actual Soil Sample Moisture Contents and Dry Densities  

 

 6.4 Summary 
 
Additional resilient modulus tests were performed on soil samples retrieved from 
three locations where field tensiometers were installed (Sections 4 and 5). General 
trends similar to those observed during earlier testing were observed.  
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7 RESILIENT MODULUS NEURAL NETWORK MODELS 
 

The artificial neural networks developed in this research program were created 
using six principal parameters. The six values were: confining stress (kPa); deviator 
stress (kPa); unconfined compression stress (kPa); plasticity index, liquid limit, and the 
difference between actual sample water content (w) and the optimum moisture content 
(OMC). These parameters were identified in the extensive laboratory testing program 
(presented in detail in our previous reports) as having the most significant influence on 
the value of the resilient modulus. The program was trained until the neural networks 
were able to reproduce the resilient modulus vs. deviator stress laboratory curve and 
predict resilient modulus values within a small error (high correlation coefficient) for all 
three soil types (A-4, A-6 and A-7-6). Examples of comparisons between measured data 
and predicted values for the Resilient Modulus are presented in Figures 7.1 (A-4), 7.2 
(A-6) and 7.3 (A-7-6) for the three soil types examined. 

 

 

Figure 7.1 MR vs. Deviator Stress, A-6 Soil 
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Figure 7.2 MR vs. Deviator Stress, A-4 Soil 

 

 

Figure 7.3 MR vs. Deviator Stress, A-7-6 Soil 
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Even the predictions of the A-7-6 soil moduli show quite good correlation with the 
observations in spite the fact that the A-7-6 data set was much smaller than were the A-4 
and A-6 data files.  

The present study improves on the correlations between the results of commonly 
used laboratory tests and the resilient modulus. Given that neural networks do identify 
patterns and associate input values with output target values, it can be used to estimate 
MR for samples that were not included in the training process.  One of the most important 
advantages of neural networks is that they recognized the nonlinear behavior of MR with 
respect to its inputs and can without difficulty accommodate new data additions.  
Since only the Ohio soil samples were used to train the network, it is useful to evaluate 
the performance of the neural network model with soils that were not used in the training 
process. In the present study, tests conducted at the University of Mississippi and at 
Purdue University were evaluated.                         

As seen in Figure 7.4, the network is capable of successfully predicting the 
resilient modulus of Mississippi study soils accurately, with a correlation coefficient of 
0.963.   
 

 

Figure 7.4 Predicted vs. Measured MR University of Mississippi Test Soils 
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Figure 7.5 shows the predictions for the Purdue study soils were not as accurately 
made. This inability to accurately predict the behavior of both the Mississippi and Purdue 
soils equally well points to the fact that MR is very sensitive to the differences in testing 
procedures and test equipment (Mohammad et al. (1994), Durham et al. (2003)). The 
Ohio and Mississippi soils were tested following the current T294-94 (SHRP Protocol 
P46) testing procedures, but in the case of the Purdue soils, the MR laboratory tests were 
performed using an earlier (AASHTO T274-82) procedure and a special compaction 
method design for the particular project. 

      
Figure 7.5 Predicted vs. Measured MR Purdue Test Soils 
 

Clearly, consistent testing procedures and preparation are required for a reliable 
model of modulus behavior to be useful. The Neural Network method developed in this 
study is capable of predicting with high precision an appropriate value for the Resilient 
Modulus for different cohesive soils provided the soils are tested according to current 
standards.  
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8 RESILIENT MODULUS PREDICTION MODEL  

 8.1 Introduction 

 The goal of this study was to develop an interface package to be used for resilient 
modulus (MR) prediction. In this section a numerical program developed according to the 
algorithms described in Section 4 is presented. Since some required input parameters may 
not be directly measured but can be calculated from other parameters, we designed a 
model capable of assisting the user in the development of the input data set required to 
execute the model. Figure 8.1XX shows the input screen of the MR prediction model.    
 
  8.2 Input Command Controls for Data Entry 
 

The topmost three input boxes (percent passing the #200 sieve (P#200), liquid limit 
(LL), plasticity index (PI)) are used to determine soil type. Alternatively, if these three 
inputs are unknown, soil type (A-4, A-6 or A-7-6) can be specified. The next two lower 
boxes accept data (Maximum Dry Density and % Optimum Moisture Content) from the 
Standard Proctor test. The next four boxes are application specific soil values (percent 
compaction, percent moisture content, soil unit weight, dry unit weight) that typically 
would be either measured or specified. Since not all these inputs are independent, the 
program is designed to calculate those values not specified, provided enough information 
to do so has been entered. Data from a specific gravity test should be entered if the test 
has been performed. However, since a direct measure of this parameter is typically made 
less commonly than the other inputs, the program will calculate the specific gravity (Gs), 
based on the other input values entered.   

The range of values measured for each input parameter in the database during the 
extensive laboratory detailed in our 1998 and 2004 studies is given to the left of the 
corresponding input box. The reader should refer to those earlier reports and section 3 of 
this report for a list of materials studied and tests performed. Although a value outside the 
data range specified can be entered, the color of the input box will change to alert the user.  
The final inputs are the unconfined compressive strength, the design confining and 
deviator stresses. When all these inputs have been provided, a calculation of resilient 
modulus is made. 
 
 8.3 Additional Features and Functions 
 

If the P#200, LL, and PI, data are provided, they can also be used to estimate the 
CBR based upon either ODOT or ME-PDG guidelines. The CBR results display in 
window screens as shown in Figures 8.2X, 8.3 and 8.4.  Figure 8.5X displays an estimate of 
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the graph used to determine the optimum moisture content and maximum density using a 
one point Proctor test. Figure 8.6 shows the page where the one point Proctor information 
is entered. 

As stated previously, several neural networks were developed specifically to 
calculate the unconfined compressive strength from classification and compaction 
moisture and density tests. To predict a design value for the unconfined compression 
from the other inputs, the user should click on the “Estimate” button located beneath the 
qu input box. A range of values for qu will be returned. With all input information either 
entered or calculated, values for MR will be calculated when the “Predict Soil MR” button 
is clicked. If any of the inputs were given as a range of values, a range of moduli 
consistent with the observed terms recorded in the database will be returned.  

 

 

Figure 8.1 The main window screen for MR prediction  
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Figure 8.2 Window screen for CBR and MR prediction according to the ME-
PDG model 

 

 
 
 

 
 
 

Figure 8.3 Window screen for CBR and MR prediction according to ODOT [ODOT, 1999] 
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Figure 8.4 Charts to determine Group Index for Ohio soils from a CBR  
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              Figure 8.5 Ohio Typical Soil Moistur
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Figure 8.6 Optimum moisture content using one point proctor testing  
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Figure 8.7 The main window screen with a predicted MR range  
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 8.4 Summary 

Three distinct research programs were performed and discussed in this report. 
Monitoring of the environmental instrumentation for the pavements at the DEL 23 LTPP 
research site begun in 1995 was completed. Measurement of volumetric water content 
(TDR) continued throughout the study period but temperature and frost depth data could 
only rarely be collected due to repeated failures of the sensors and/or collection systems.  

A research program to monitor the location of the groundwater under highway 
pavements that began with three locations under the LTPP pavements and was extended 
to additional sections at the DEL 23 site and at other locations across the state was 
completed. The measurements taken over the duration of the project clearly showed that 
the soil under the pavement sections studied became saturated as the water tables rose. In 
most locations saturated conditions up to the base layer (none of the instruments were 
installed in the base so the maximum height of the water table could not be determined by 
direct measurement) within a year of construction. It is reasonable to conclude that 
saturated conditions typically exist for much of the life of the pavement.  

In the third activity a model for predicting the resilient modulus from static soil 
properties was developed for compacted cohesive subgrade soils typical of those found in 
Ohio. A laboratory program designed to develop a database sufficient to establish 
relationships between dynamic soil behavior and static properties was conducted.  

The development of the mathematical model is based on the implementation of 
artificial neural networks (ANNs). One advantage to using ANN algorithms for 
regression analysis is that they are flexible and based on mathematical applications 
without strict statistical boundaries.  Once required input parameters and targeted 
parameters are determined and proper ANN algorithms are set, the algorithms are capable 
of handling complex problems. The ANNs developed in this study were incorporated 
with multilayer back-propagation (supervised learning) algorithms.  Further exploration 
using different ANN algorithms with improved overall prediction and a better fit to the 
nature of the problems should be encouraged.   

The database could be strengthened with additional test results. Although nearly 
800 MR tests were performed, there are only about 80 soil samples in the database for 
predicting qu. In addition, even though our field data show that saturated conditions can 
be expected in most pavement systems in Ohio, the number of tests performed on 
saturated samples is not sufficient to provide seasonal MR values for the ME-PDG model 
as required. The development of ANNs for soil property prediction with expediting 
algorithms capable of handling small data sets should be explored. Another possible 
approach would be to use artificial neural network algorithms to determine the 3 
regression coefficients (k1, k2, and k3) required in the input Level 1 of the ME-PDG 
model for MR prediction.  The same ANN concept can be applied to aggregated or 
coarse-grained soils which are key materials for the base layers of pavement structure. 
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9 IMPLEMENTATION 

Subsurface soil data collected at the DEL23 site over the duration of the current 
project, combined with the data from our two previous projects, have provided the 
environmental background information for researchers studying pavement performance at 
the Ohio LTPP site. Over the duration of the projects, much of the thermal and resistivity 
instrumentation failed but the devices recording the changing groundwater conditions 
continued to provide useful information for the full duration of the projects. The pore 
pressure instrumentation installed at the DEL23 and other sites across Ohio documented a 
significant rise in groundwater levels over time under virtually all monitored highway 
sections. Recognition that high water levels are typical under pavement sections 
throughout the state should impact the design of new and repaired pavements across Ohio. 
The method presented should replace current procedures for most A-4, A-6 and A-7-6 
soils. 

The numerical method presented in this report will calculate the resilient modulus 
of cohesive soils for use in pavement design based on the results of nearly 1000 
laboratory dynamic resilient modulus tests. Because the data base behind the numerical 
methods employed in the model is so extensive, comparison of predicted moduli with 
laboratory measured values is very good even when only classification test results and 
static soil properties are used as inputs. Provided current ASTM standard procedures are 
followed, good agreement between measured and predicted moduli was maintained even 
for tests conducted by other agencies on soils with different geologic origin and from 
other parts of the country. 
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Department of Civil and Environmental Engineering and Geodetic Science  
The Ohio State University 
 
 
Soil Resilient Modulus Determination, version: June 22, 2009 
 
 
This is a program to estimate soil resilient modulus for three different cohesive soils  
commonly found in Ohio: A-4, A-6, and A-7-6. 
 
 
=============================================================== 
Installation 
1) On the installation package of this program, look for the "Setup.exe" file. 
2) Double-click on the "Setup.exe" file and follow the installation process. 
 
 
 
=============================================================== 

 
Introduction 
1) Go to the directory where you have installed this program 
2) Double-click on the "Soil Resilient .exe" file to run the program 
 
Data Entry 
 

1) Enter the information in the active input boxes.  
Sample No.   

Here enter any identifying information you want to provide 
 Soil Type 
  % Passing #200 Sieve 
  Liquid Limit 
  Plasticity Index 
  The program will determine which soil type the sample represents  
  (Currently A-4, A-6, A-7-6 are the soil types that can be analyzed) 

Alternatively the user can enter one of the three modeled soil types 
directly from a pull down menu. 

 Proctor Test Results  
Optimum Moisture Content (%) 
Maximum Dry Density  
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Total Max Density  
Values are entered as Unit Weights. Either Maximum Dry Density or 
Total Max Density is calculated from the other value when the Optimum 
Moisture Content is known. 

 Degree of Saturation 
% of Compaction 
Value of compaction either required or achieved, given as a percentage of 
Standard Proctor density as obtained in ASTM D698 
% Moisture Content 
Measured or required in-place soil moisture content 
Total Density 
Measured or required in-place total unit weight  

  Dry Density 
Measured or required in-place dry unit weight  
Specific Gravity 
Degree of Saturation will be calculated or can be supplied as input. If 
supplied, other inputs in this section are disabled 

Unconfined Compressive Strength 
The soil strength as measured in an unconfined compression test is entered 
here. Alternatively, the unconfined compressive strength can be estimated 
from the supplied data using the program database and the neural network 
algorithms developed for predicting modulus. 

 Stress States 
  Confining Stress 
  Deviator Stress 

 Enter test specific boundary conditions.  
 
 
When all input values have been supplied or estimated the resilient modulus can 
be calculated by pressing bottom right (Estimate Soil Mr) button. 
If any required inputs are missing, pressing the Estimate Soil Mr Button will 
generate a prompt to continue with data entry 
 
You may use the active scrollbars when they are provided if you prefer. 

  
 You can select the system of units. Control +E for English units or Control +I for 
SI units, or from the View tab, select Unit System then select English or International 
units. 
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  Under the Tools menu  and compare it to the model  estimate as would be 
obtained from the use ME-PDG or Ohio CBR for the given input values.   
 
 
=====Copy screen function 
1) On any window screen, go to the "File" menu bar and choose  
   the "Copy Current Screen" option (shutter sound will be provoked indicating 
   that the transaction is completed, the current screen will be captured 
   in a clipboard).  
2) Go to a word processor window or picture editor window and paste the  
   clipboard to your working window. 
 
======Optimum Moisture Content Estimator 
This feature allows users to use one point proctor test 
to estimate an optimum soil moisture content 
Once you develop your optimum moisture content, click on the "APPLY" button 
to transfer the data to the main screen. 
 
 
 
On the "Optimum Moisture Content Estimator" window, 
   
  Method 1: 
  1.1) Provide information about the total wet soil weight, moisture % of soil  
       dry weight, and % maximum dry soil density.  
  1.2) If the % maximum dry soil density is greater or equal to 10, 
       specific gravity of material retained on 3/4" sieve is also required to 
       adjust for gravel factors 
 
  Method 2 
  2.1) Double-click on the "Show Graphic" button 
  2.2) On the Typical Moisture Density Curve Set "C" window, 
       place your mouse pointer (a cross shape) within a graphic area 
       to get coordinates  
  2.3) Back to the "Optimum Moisture Content Estimator" window, 
       If the % maximum dry soil density is greater or equal to 10, 
       specific gravity of material retained on 3/4" sieve is also required to 
       adjust for gravel factors. 
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  Method 3 
  3.1) Choose the "User defined maximum dry soil density" option, 
  3.2) Provide information on the % maximum dry soil density and  
       the maximum dry soil density 
  3.3) If the % maximum dry soil density is greater or equal to 10, 
       specific gravity of material retained on 3/4" sieve is also required to 
       adjust for gravel factors 
 
  Method 4 
  4.1) Choose the "User defined moisture density curve" option, 
  4.2) Provide information on the % maximum dry soil density and  
       the moisture density curve no. 
  4.3) If the % maximum dry soil density is greater or equal to 10, 
       specific gravity of material retained on 3/4" sieve is also required to 
       adjust for gravel factors 
 
 
=============================================================== 
Disclaimer: 
This computer program was developed by Department of Civil and Environmental 
Engineering and Geodetic Science, The Ohio State University.  This software has been 
carefully tested on multiple systems at the University but may not work on every 
computer.   
The soil data used to develop this program did not include all possible soils that might be 
encountered. Therefore the calculated values should not be used for specific purposes 
without verification by a professional qualified to verify the applicability of such data or 
information.   
The University may not be held liable for any damages, direct or consequential, which 
may result from the use of this program. 
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